References / Bibliografía

 

[1] Witten, I. H., Frank, E. ;., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and techniques / Ian H. Witten (3a. ed. –.). s.l.: Elsevier.

[2] Berry, M. W., & Kogan, J. (2010). Text mining. [electronic resource] : applications and theory. Hoboken, NJ : John Wiley & Sons, 2010.

[3] Hearst (1999). Untangling Text Data Mining, Proc. of ACL’99: The 37th Annual Meeting of the Association for Computational Linguistics, University of Maryland, June 20-26, 1999.

[4] Kodratoff (1999). Knowledge Discovery in Texts: A Definition and Applications, Proc. of the 11th International Symposium on Foundations of Intelligent Systems (ISMIS-99), 1999

[5] Montes-y-Gómez, M. Minería de texto: Un nuevo reto computacional. Laboratorio de Lenguaje Natural, Centro de Investigación en Computación, Instituto Politécnico Nacional.

[6] Ethnologue,. (2015). Summary by language size. Retrieved 23 June 2015, from https://www.ethnologue.com/statistics/size

[7] Brun, R.E., & Senso, J.A. (2004). Mineria Textual. El profecional de la informacion, 3.

[8] Hotho, A., Nürnberger, A. & Paaß, G. (2005). A Brief Survey of Text Mining. LDV Forum – GLDV Journal for Computational Linguistics and Language Technology, 20, 19-62.

[9] Streibel, O. (2010). Mining Trends in Texts on the Web. DC-FIS 2010 Doctoral Consortium of the Future Internet Symposium 2010.

[10] Gémar, G., & Jiménez-Quintero, J. A. (2015). Text mining social media for competitive analysis. Tourism & Management Studies, 11(1), 84-90.

[11] Quinlan J. R. (1986) Induccion of decision trees. Machine Learning, 1(1), 81–106.

[12] Quinlan (1993) C4.5: Programs for Machine Learning Morgan Kaufmann.

[13] Hernández, J., Ramírez, M.J., & Ferri, C. (2004). INTRODUCCIÓN A LA MINERÍA DE DATOS. Pearson.

[14]  Ye, N. (Ed.). (2003). The handbook of data mining (Vol. 24). Mahwah, NJ/London: Lawrence Erlbaum Associates, Publishers.

[15]  Miner, G. (2012). Practical text mining and statistical analysis for non-structured text data applications. Waltham, MA: Academic Press.

[16]  Stevens, S. (1946). On The Theory Of Scales Of Measurement. Science, 677-680.

[17]  Uysal, A. K., & Gunal, S. (2014). The impact of preprocessing on text classification. Information Processing And Management, 50104-112. doi:10.1016/j.ipm.2013.08.006

[18]  Salton, G., Wong, A., & Yang, C. S. (1975). A Vector Space Model for Automatic Indexing. Communications Of The ACM, 18(11), 613-620. doi:10.1145/361219.361220

[19]  Ning Liu, Benyu Zhang, Jun Yan, Zheng Chen, Wenyin Liu, Fengshan Bai, Leefeng Chien. 2005. Text Representation: From Vector to Tensor. In: IEEE International Conference on Data Mining, ICDM, 2005. p.725-728.

[20]  Munková, D., Munk, M., & Vozár, M. (2013). Data Pre-processing Evaluation for Text Mining: Transaction/Sequence Model. Procedia Computer Science, 18(2013 International Conference on Computational Science), 1198-1207. doi:10.1016/j.procs.2013.05.286

[21]  Muñoz, A., & Álvarez, I. (2014). Esteganografía lingüística en lengua española basada en modelo N-gram y ley de Zipf. Arbor.

[22]  Ramesh, B., Xiang, C., & Lee, T. H. (2015). Shape classification using invariant features and contextual information in the bag-of-words model. Pattern Recognition, 48894-906. doi:10.1016/j.patcog.2014.09.019

[23]  Ferilli, S., Esposito, F., & Grieco, D. (2014). Automatic Learning of Linguistic Resources for Stopword Removal and Stemming from Text. Procedia Computer Science, 38(10th Italian Research Conference on Digital Libraries, IRCDL 2014), 116-123. doi:10.1016/j.procs.2014.10.019

[24]  C., K. C., Anzola, J. P., & B., G. T. (2015). Classification Methodology Of Research Topics Based In Decision Trees: J48 And Random tree. International Journal Of Applied Engineering Research, 10(8), 19413-19424.

[25]  Yan-yan, S., & Ying, L. (2015). Decision tree methods: applications for classification and prediction. Shanghai Archives Of Psychiatry, 27(2), 130-135. doi:10.11919/j.issn.1002-0829.215044

[25]  Yan-yan, S., & Ying, L. (2015). Decision tree methods: applications for classification and prediction. Shanghai Archives Of Psychiatry, 27(2), 130-135. doi:10.11919/j.issn.1002-0829.215044

[26]  Spasić, I., Livsey, J., Keane, J., & Nenadić, G. (2014). Text mining of cancer-related information: Review of current status and future directions. Sciencedirect.com. Retrieved 12 May 2015, from http://www.sciencedirect.com/science/article/pii/S1386505614001105

[27]  Ostrand, T., & Weyuker, E. (2007). How to measure success of fault prediction models. Fourth International Workshop on Software Quality Assurance in Conjunction with the 6th ESEC/FSE Joint Meeting – SOQUA ’07.

[28]  Bowes, D., Hall, T., & Gray, D. (2013). DConfusion: A technique to allow cross study performance evaluation of fault prediction studies. Autom Softw Eng Automated Software Engineering, 287-313.

[29] Spasić, I., Livsey, J., Keane, J., & Nenadić, G. (2014). Text mining of cancer-related information: Review of current status and future directions. Sciencedirect.com. Retrieved 12 May 2015, from http://www.sciencedirect.com/science/article/pii/S1386505614001105

[30]  Newzealand.com, (2015). Plantas y animales de Nueva Zelanda | Ruapehu, Nueva Zelanda. Retrieved 11 July 2015, from http://www.newzealand.com/ar/feature/new-zealand-flora-and-fauna/

[31]  Hall, M., Frank, E., Geoffrey, H.,  Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume 11, Issue 1.

[32]  Garcia, D., (2006). Weka Tutorial (Spanish). Retrieved 12 July 2015, from http://www.metaemotion.com/diego.garcia.morate/download/weka.pdf

[33]  Salton, G., Wong, A., & Yang, C. (1975). A vector space model for automatic indexing. Communications of the ACM, 613-620.

[34]  Namee, B. (2012). DIT MSc in Computing (Data Analytics): Text Analytics in Weka. Ditmscda.blogspot.ca. Retrieved from http://ditmscda.blogspot.ca/2012/03/text-analytics-in-weka.html

[35]  Snowball.tartarus.org,. (2015). Defining R1 and R2. Retrieved 24 July 2015, from http://snowball.tartarus.org/texts/r1r2.html

[36]      Snowball.tartarus.org,. (2015). Spanish stemming algorithm. Retrieved from http://snowball.tartarus.org/algorithms/spanish/stemmer.html

[37]  Weka.wikispaces.com,. (2015). weka – GenericObjectEditor (book version). Retrieved from https://weka.wikispaces.com/GenericObjectEditor+%28book+version%29

[38]  Cs.cmu.edu, (2015). Rainbow. Retrieved from http://www.cs.cmu.edu/~mccallum/bow/rainbow/

[39]  Weka.sourcearchive.com,. (2015). weka 3.6.0-3, classweka_1_1filters_1_1unsupervised_1_1attribute_1_1StringToWordVector_a4ad7e64ecb476e527a19afee2c96aea6.html. Retrieved from http://weka.sourcearchive.com/documentation/3.6.0-3/classweka_1_1filters_1_1unsupervised_1_1attribute_1_1StringToWordVector_a4ad7e64ecb476e527a19afee2c96aea6.html

[40]  Drazin, S., & Montag, M. (2015). Decision Tree Analysis using Weka. University of Miami. Machine Learning – Project II. Retrieved from http://ww.samdrazin.com classes/een548/project2report.pdf

[41]  Spasić, I., Livsey, J., Keane, J., & Nenadić, G. (2014). Text mining of cancer-related information: Review of current status and future directions. Sciencedirect.com. Retrieved 12 May 2015, from http://www.sciencedirect.com/science/article/pii/S1386505614001105

[42]  Jindala, R., & Tanejab, S. (2015). A Lexical Approach for Text Categorization of Medical Documents.  Procedia Computer Science 46 314 – 320.

[43]  Bui,  D., & Zeng-Treitler, Q. (2014). Learning regular expressions for clinical text classification. J Am Med Inform Assoc. 2014 Sep-Oct;21(5):850-7. doi: 10.1136/amiajnl-2013-002411.

[44]  Pérez, A., Gojenola, K., Casillas, A., Oronoz, M., & Díaz de Ilarraza, A. (2015). Computer aided classification of diagnostic terms in spanish. Expert Systems With Applications, 422949-2958. doi:10.1016/j.eswa.2014.11.035

 

[45]  Vilares, D., Alonso, M. A., & Gómez, C. (2015). A syntactic approach for opinion mining on Spanish reviews. Natural Language Engineering21(1), 139.

[46]  Pérez Abelleira, M. Alicia, & Cardoso, Alejandra Carolina. (2010). Minería de texto para la categorización automática de documentos.  Cuadernos de la Facultad 5.

 

Research paper

Document Classification with WEKA


TM References Work Related

Minería de Texto Referencias

 

Progress Reports 


Intro Text Mining


Text Mining


Text Mining Methodology


Evaluation and work Related


WEKA


Text Mining Tutorial

Tutorial de Mineía de Texto


Document Classification with WEKA FINAL

Clasificación de Documentos en Weka Final


 

 

 

 Introduction 

 Text Mining 

Background

      WEKA     

 WEKA Tutorial 

 Concliusion

References


By Valeria Guevara